

LMV931 Single/LMV932 Dual/LMV934 Quad 1.8V, RRIO Operational Amplifiers

General Description

The LMV931/LMV932/LMV934 are low voltage, low power operational amplifiers. LMV931/LMV932/LMV934 are guaranteed to operate from +1.8V to +5.5V supply voltages and have rail-to-rail input and output. LMV931/LMV932/LMV934 input common mode voltage extends 200mV beyond the supplies which enables user enhanced functionality beyond the supply voltage range. The output can swing rail-to-rail unloaded and within 105mV from the rail with 600 Ω load at 1.8V supply. The LMV931/LMV932/LMV934 are optimized to work at 1.8V which make them ideal for portable two-cell battery powered systems and single cell Li-lon systems.

LMV931/LMV932/LMV934 exhibit excellent speed-power ratio, achieving 1.4MHz gain bandwidth product at 1.8V supply voltage with very low supply current. The LMV931/LMV932/LMV934 are capable of driving a 600 Ω load and up to 1000pF capacitive load with minimal ringing. LMV931/LMV932/LMV934 have a high DC gain of 101dB, making them suitable for low frequency applications.

The single LMV931 is offered in space saving 5-Pin SC70 and SOT23 packages. The dual LMV932 are in 8-Pin MSOP and SOIC packages and the quad LMV934 are in 14-Pin TSSOP and SOIC packages. These small packages are ideal solutions for area constrained PC boards and portable electronics such as cellular phones and PDAs.

Features

(Typical 1.8V Supply Values; Unless Otherwise Noted)

Guaranteed 1.8V, 2.7V and 5V specifications -Output swing — w/600Ω load 80mV from rail — w/2kQ load 30mV from rail 200mV beyond rails V_{CM} Supply current (per channel) 100µA Gain bandwidth product 1.4MHz 4.0mV Maximum Vos Ultra tiny packages -

Temperature range

Applications

- Consumer communication
- Consumer computing
- PDAs
- Audio pre-amp
- Portable/battery-powered electronic equipment
- Supply current monitoring
- Battery monitoring

-40°C to 125°C

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Machine Model	200V
Human Body Model	2000V
Differential Input Voltage	± Supply Voltage
Supply Voltage (V+–V –)	6V
Output Short Circuit to V+ (Note 3)	
Output Short Circuit to V- (Note 3)	
Storage Temperature Range	–65°C to 150°C
Junction Temperature (Note 4)	150°C

Mounting Temp.	
Infrared or Convection (20 sec)	235°C

Operating Ratings (Note 1)

Supply Voltage Range	1.8V to 5.5V
Temperature Range	–40°C to 125°C
Thermal Resistance (θ _{JA})	
5-Pin SC70	414°C/W
5-Pin SOT23	265°C/W
8-Pin MSOP	235°C/W
8-Pin SOIC	175°C/W
14-Pin TSSOP	155°C/W
14-Pin SOIC	127°C/W

1.8V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 1.8V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes. See (Note 10)

Symbol	Parameter	Condition		Min (Note 6)	Typ	Max	Units
V _{OS}	Input Offset Voltage	LMV931 (Single)		(14018-0)	1	4 6	mV
		LMV932 (Dual) LMV934 (Quad)			1	5.5 7.5	mV
TCV _{OS}	Input Offset Voltage Average Drift				5.5		µV/°C
Ι _Β	Input Bias Current				15	35 50	nA
I _{OS}	Input Offset Current				13	25 40	nA
I _S	Supply Current (per channel)				103	185 205	μΑ
CMRR	Common Mode Rejection Ratio	LMV931, 0 ≤ V _{CN} 1.4V ≤ V _{CM} ≤ 1.8	_M ≤ 0.6V 3V (Note 8)	60 55	78		
		LMV932 and LMV934 $0 \le V_{CM} \le 0.6V$ $1.4V \le V_{cu} \le 1.8V$ (Note 8)		55 50	76		dB
		$-0.2V \le V_{CM} \le 0$ 1.8V $\le V_{CM} \le 2.0$	V)V	50	72		
PSRR	Power Supply Rejection Ratio	1.8V ≤ V+ ≤ 5V		75 70	100		dB
CMVR	Input Common-Mode Voltage Range	For CMRR Range ≥ 50dB	$T_{A} = 25^{\circ}C$ $T_{A} -40^{\circ}C \text{ to } 85^{\circ}$ C $T_{A} = 125^{\circ}C$	V0.2 V- V- +0.2	-0.2 to 2.1	V+ +0.2 V+ V+-0.2	V
A _V	Large Signal Voltage Gain LMV931 (Single)	$R_L = 600\Omega$ to 0.9V, V _Ω = 0.2V to 1.6V, V _{CM} = 0.5V		77 73	101		dB
		$R_L = 2k\Omega$ to 0.9V, V _O = 0.2V to 1.6V, V _{CM} = 0.5V		80 75	105		
	Large Signal Voltage Gain LMV932 (Dual)	$R_L = 600\Omega$ to 0.9 $V_O = 0.2V$ to 1.6V	V, /, V _{CM} = 0.5V	75 72	90		dB
	LMV934 (Quad)	$R_{L} = 2k\Omega \text{ to } 0.9V$ $V_{O} = 0.2V \text{ to } 1.6V$, V, V _{CM} = 0.5V	78 75	100		dВ

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _O Output Swing	Output Swing	$R_L = 600\Omega$ to 0.9V $V_{iN} = \pm 100$ mV	1.65 1.63	1.72	(1010-0)	
				0.077	0.105 0.120	V
		$R_L = 2k\Omega$ to 0.9V $V_{IN} = \pm 100$ mV	1.75 1.74	1.77		V
				0.024	0.035 0.04	
Ι _Ο	Output Short Circuit Current	Sourcing, $V_0 = 0V$ $V_{IN} = 100mV$	4 3.3	8		0
		Sinking, $V_0 = 1.8V$ $V_{IN} = -100mV$	7 5	9		mA

1.8V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}$ C. V⁺ = 1.8V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes. See (Note 10)

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
SR	Slew Rate	(Note 7)		0.35		V/µs
GBW	Gain-Bandwidth Product			1.4		MHz
Φ _m	Phase Margin			67		deg
G _m	Gain Margin			7		dB
e _n	Input-Referred Voltage Noise	$f = 1 \text{kHz}, \text{ V}_{\text{CM}} = 0.5 \text{V}$		60		_nV 1√Hz
i _n	Input-Referred Current Noise	f = 1kHz		0.06		_ <u>pA</u> √Hz
THD	Total Harmonic Distortion	$f = 1 \text{kHz}, A_V = +1$		0.023		%
		$R_L = 600\Omega, V_{IN} = 1 V_{PP}$				
	Amp-to-Amp Isolation	(Note 9)		123		dB

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 2.7V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes. See (Note 10)

Symbol	Parameter	Condition		Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units	
V _{OS}	Input Offset Voltage	LMV931 (Single)			1	4 6	mV	
		LMV932 (Dual) LMV934 (Quad)			1	5.5 7.5	mV	
TCV _{OS}	Input Offset Voltage Average Drift				5.5		μV/°C	
I _B	Input Bias Current				15	35 50	nA	
I _{OS}	Input Offset Current				8	25 40	nA	
I _S	Supply Current (per channel)				105	190 210	μA	
CMRR	Common Mode Rejection Ratio	$LMV931, 0 \le V_C$ $2.3V \le V_{CM} \le 2.3$	_M ≤ 1.5V 7V (Note 8)	60 55	81			
		LMV932 and LM $0 \le V_{CM} \le 1.5V$ $2.3V \le V_{CM} \le 2.3V$	V934 7V (Note 8)	55 50	80		dB	
		$-0.2V \le V_{CM} \le 0$ $2.7V \le V_{CM} \le 2.1$)V 9V	50	74			
PSRR	Power Supply Rejection Ratio	$1.8V \le V^+ \le 5V$ $V_{OM} = 0.5V$		75 70	100		dB	
V _{CM}	Input Common-Mode Voltage Range	For CMRR Range ≥ 50dB	$T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C \text{ to}$ $85^{\circ}C$ $T_{A} = -405^{\circ}O$	V0.2 V-	-0.2 to 3.0	V+ +0.2 V+	V	
A _V	Large Signal Voltage Gain LMV931 (Single)	$R_L = 600\Omega$ to 1.3 $V_O = 0.2V$ to 2.5 $R_L = 2k\Omega$ to 1.35 $V_O = 0.2V$ to 2.5	V V V V	87 86 92 91	104	V0.2	dB	
	Large Signal Voltage Gain LMV932 (Dual) LMV934 (Quad)	$V_{O} = 0.2V \text{ to } 2.5V$ $R_{L} = 600\Omega \text{ to } 1.35V,$ $V_{O} = 0.2V \text{ to } 2.5V$ $R_{L} = 2k\Omega \text{ to } 1.35V,$ $V_{L} = 0.2V \text{ to } 2.5V$		78 75 81 78	90 100		dB	
Vo	Output Swing	$V_0 = 0.2V 10 2.5V$ $R_L = 600\Omega \text{ to } 1.35V$ $V_{IN} = \pm 100\text{mV}$		2.55 2.53	2.62 0.083	0.110 0.130		
		$R_L = 2k\Omega$ to 1.35V $V_{IN} = \pm 100$ mV		2.65 2.64	2.675 0.025	0.04	V	
I _O	Output Short Circuit Current	Sourcing, V _O = 0 V _{IN} = 100mV	V	20 15	30	0.045		
		Sinking, $V_0 = 0V$ $V_{IN} = -100mV$,	18 12	25		- mA	

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}$ C. V⁺ = 2.7V, V⁻ = 0V, V_{CM} = 1.0V, V_O = 1.35V and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes. See (Note 10)

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
SR	Slew Rate	(Note 7)		0.4		V/µs
GBW	Gain-Bandwidth Product			1.4		MHz
Φ _m	Phase Margin			70		deg
G _m	Gain Margin			7.5		dB
e _n	Input-Referred Voltage Noise	$f = 1 \text{ kHz}, V_{CM} = 0.5 \text{ V}$		57		<u>nV</u> √Hz
i _n	Input-Referred Current Noise	f = 1kHz		0.082		<u>pA</u> √Hz
THD	Total Harmonic Distortion	$f = 1 \text{ kHz}, A_V = +1$ $R_L = 600\Omega, V_{IN} = 1 V_{PP}$		0.022		%
	Amp-to-Amp Isolation	(Note 9)		123		dB

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 5V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes. See (Note 10)

Symbol	Parameter	Conc	lition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage	LMV931 (Single)			1	4 6	mV
		LMV932 (Dual) LMV934 (Quad)			1	5.5 7.5	mV
TCV _{OS}	Input Offset Voltage Average Drift				5.5		μV/°C
I _B	Input Bias Current				14	35 50	nA
I _{os}	Input Offset Current				9	25 40	nA
I _S	Supply Current (per channel)				116	210 230	μA
CMRR	Common Mode Rejection Ratio	$0 \le V_{CM} \le 3.8V$ $4.6V \le V_{CM} \le 5.0$)V (Note 8)	60 55	86		dB
		$-0.2V \le V_{CM} \le 0V$ $5.0V \le V_{CM} \le 5.2V$		50	78		ub
PSRR	Power Supply Rejection Ratio	$1.8V \le V^+ \le 5V$ $V_{CM} = 0.5V$		75 70	100		dB
CMVR	Input Common-Mode Voltage Range	For CMRR Range ≥ 50dB	$T_{A} = 25^{\circ}C$ $T_{A} = -40^{\circ}C \text{ to}$ $85^{\circ}C$	V0.2 V-	-0.2 to 5.3	V+ +0.2 V+	v
			T _A = 125°C	V ⁻ +0.3		V+ -0.3	
A _V	Large Signal Voltage Gain LMV931 (Single)	$R_{L} = 600\Omega \text{ to } 2.5$ $V_{O} = 0.2V \text{ to } 4.8V$	V, /	88 87	102		dB
		$R_L = 2k\Omega$ to 2.5V $V_O = 0.2V$ to 4.8V	, /	94 93	113		ub
	Large Signal Voltage Gain LMV932 (Dual)	$R_{L} = 600\Omega \text{ to } 2.5$ $V_{O} = 0.2V \text{ to } 4.8V$	V, /	81 78	90		dD
	LMV934 (Quad)	$R_L = 2k\Omega$ to 2.5V V _O = 0.2V to 4.8V	, /	85 82	100		uв
Vo	Output Swing	$R_{L} = 600\Omega$ to 2.5 $V_{IN} = \pm 100 \text{mV}$	V	4.855 4.835	4.890		
					0.120	0.160 0.180	
		$R_{L} = 2k\Omega \text{ to } 2.5V$ $V_{IN} = \pm 100 \text{mV}$		4.945 4.935	4.967		v
					0.037	0.065 0.075	
I _O	Output Short Circuit Current	LMV931, Sourcir V _{IN} = 100mV	ng, V _O = 0V	80 68	100		mΔ
		Sinking, $V_0 = 5V$ $V_{IN} = -100mV$		58 45	65		

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 5V, V⁻ = 0V, $V_{CM} = V^{+}/2$, $V_O = 2.5V$ and $R_L > 1 M\Omega$. Boldface limits apply at the temperature extremes. See (Note 10)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
SR	Slew Rate	(Note 7)		0.42		V/µs
GBW	Gain-Bandwidth Product			1.5		MHz
Φ _m	Phase Margin			71		deg
G _m	Gain Margin			8		dB
e _n	Input-Referred Voltage Noise	$f = 1 kHz, V_{CM} = 1 V$		50		nV √Hz
i _n	Input-Referred Current Noise	f = 1kHz		0.07		<u>pA</u> 1√Hz
THD	Total Harmonic Distortion	f = 1kHz, $A_V = +1$ $R_L = 600Ω$, $V_O = 1 V_{PP}$		0.022		%
	Amp-to-Amp Isolation	(Note 9)		123		dB

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45mA over long term may adversely affect reliability.

Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

Note 5: Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: Connected as voltage follower with input step from V- to V+. Number specified is the slower of the positive and negative slew rates.

Note 8: For guaranteed temperature ranges, see Input Common-Mode Voltage Range specifications.

Note 9: Input referred, $R_1 = 100 k\Omega$ connected to V+/2. Each amp excited in turn with 1kHz to produce $V_0 = 3V_{PP}$ (For Supply Voltages <3V, $V_0 = V^+$).

Note 10: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$. See Applications section for information of temperature derating of the device. Absolute Maximum Ratings indicated junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

Connection Diagrams

Ordering Information

Package	Part Number	Packaging Marking	Transport Media	NSC Drawing	
5-Pin SC70	LMV931MG	1k Units Tape and Reel			
	LMV931MGX	A74	3k Units Tape and Reel	MAAUSA	
5 Din SOT22	LMV931MF	4704	1k Units Tape and Reel	MEOFA	
5-Pin SOT23	LMV931MFX	A79A	3k Units Tape and Reel		
	LMV932MM	A96A	1k Units Tape and Reel		
8-PIN M50P	LMV932MMX	AOOA	3.5k Units Tape and Reel	MUAU8A	
	LMV932MA		Rails	MOSA	
6-FIII 3010	LMV932MAX	LIVIV932IVIA	2.5k Units Tape and Reel	IVIUOA	
	LMV934MT		Rails	MTC14	
14-PIII 1550P	LMV934MTX		2.5k Units Tape and Reel	WI1014	
14-Pin SOIC	LMV934MA		Rails	M14A	
	LMV934MAX		2.5k Units Tape and Reel		

 $\frac{0.010-0.020}{(0.254-0.508)} \times 45^{\circ}$

1

0.008-0.010 (0.203-0.254) TYP ALL LEADS